Synthesis and Characterization of Magnetic Metal-encapsulated Multi-walled Carbon Nanobeads

نویسندگان

  • A Leela Mohana Reddy
  • S Ramaprabhu
چکیده

A novel, cost-effective, easy and single-step process for the synthesis of large quantities of magnetic metal-encapsulated multi-walled carbon nanobeads (MWNB) and multi-walled carbon nanotubes (MWNT) using catalytic chemical vapour deposition of methane over Mischmetal-based AB3 alloy hydride catalyst is presented. The growth mechanism of metal-encapsulated MWNB and MWNT has been discussed based on the catalytically controlled root-growth mode. These carbon nanostructures have been characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM and HRTEM), energy dispersive analysis of X-ray (EDAX) and thermogravimetric analysis (TGA). Magnetic properties of metal-filled nanobeads have been studied using PAR vibrating sample magnetometer up to a magnetic field of 10 kOe, and the results have been compared with those of metal-filled MWNT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-walled carbon nanotubes supported palladium nanoparticles: Synthesis, characterization and catalytic activity towards methanol electro oxidation in alkaline media

Palladium nanoparticles supported on multi-walled carbon nanotubes (Pd/MWCNTs) have been synthesized using a modified polyol reduction method and its performance in methanol oxidation reactions has evaluated. The morphology of palladium on MWCNTs was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The catalytic performance of synthesized catalyst ...

متن کامل

Synthesis of Some New Disperse Dyes-multi Walled Carbon Nanotubes Adducts and Impact Analysis of Substituents

We have reported here a simple, low cost preparation of four new adducts from some anthraquinone disperse dyes with functionalized multi-walled carbon nanotubes in the presence of azochromophore. The structural differences between the final products are evaluated by visual dispersion test, UV-Vis Spectroscopy, Fourier transforms infrared, Raman, nuclear magnetic resonance and thermal gravimetri...

متن کامل

Synthesis and Characterization of Carbon Nanotubes Decorated with Magnesium Ferrite (MgFe2O4) Nanoparticles by Citrate-Gel Method

In the present work, magnetic nanocomposites of the multi-walled carbon nanotubes (MWCNTs) decorated with magnesium ferrite (MgFe2O4) nanoparticles were synthesized successfully by citrate-gel method. The shape, structure, size, and properties of the as-synthesized sample were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction pattern (XRD), transmission electron...

متن کامل

Magnetic nanobeads: Synthesis and application in biomedicine

Nanobiotechnology appears to be an emerging science which leads to new developments in the field of medicine. Importance of the magnetic nanomaterials in biomedical science cannot be overlooked. The most commonly used chemical methods to synthesize drugable magnetic nanobeads are co-precipitation, thermal decomposition and microemulsion. However monodispersion, selection of an appropriate coati...

متن کامل

Journal of Physics: Conference Series Biomedical Platforms Based on Composite Nanomaterials and Cellular Toxicity

Carbon nanotubes possess unique chemical, physical, optical, and magnetic properties, which make them suitable for many uses in industrial products and in the field of nanotechnology, including nanomedicine. We describe fluorescent nanocomposites for use in biosensors or nanoelectronics. Then we describe recent results on the issue of cytotoxicity of carbon nanotubes obtained in our labs. Silic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008